Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 535
Filtrar
1.
Antimicrob Agents Chemother ; : e0164323, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639491

RESUMO

The development of novel antiplasmodial compounds with broad-spectrum activity against different stages of Plasmodium parasites is crucial to prevent malaria disease and parasite transmission. This study evaluated the antiplasmodial activity of seven novel hydrazone compounds (referred to as CB compounds: CB-27, CB-41, CB-50, CB-53, CB-58, CB-59, and CB-61) against multiple stages of Plasmodium parasites. All CB compounds inhibited blood stage proliferation of drug-resistant or sensitive strains of Plasmodium falciparum in the low micromolar to nanomolar range. Interestingly, CB-41 exhibited prophylactic activity against hypnozoites and liver schizonts in Plasmodium cynomolgi, a primate model for Plasmodium vivax. Four CB compounds (CB-27, CB-41, CB-53, and CB-61) inhibited P. falciparum oocyst formation in mosquitoes, and five CB compounds (CB-27, CB-41, CB-53, CB-58, and CB-61) hindered the in vitro development of Plasmodium berghei ookinetes. The CB compounds did not inhibit the activation of P. berghei female and male gametocytes in vitro. Isobologram assays demonstrated synergistic interactions between CB-61 and the FDA-approved antimalarial drugs, clindamycin and halofantrine. Testing of six CB compounds showed no inhibition of Plasmodium glutathione S-transferase as a putative target and no cytotoxicity in HepG2 liver cells. CB compounds are promising candidates for further development as antimalarial drugs against multidrug-resistant parasites, which could also prevent malaria transmission.

2.
J Vet Med Sci ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569883

RESUMO

Plasmodium parasites within mosquitoes are exposed to various physiological processes, such as blood meal digestion activity, the gonotrophic cycle, and host responses preventing the entry of parasites into the midgut wall. However, when in vitro-cultured ookinetes are injected into the hemocoel of mosquitoes, Plasmodium parasites are not affected by the vertebrate host's blood contents and do not pass through the midgut epithelial cells. This infection method might aid in identifying mosquito-derived factors affecting Plasmodium development within mosquitoes. This study investigated novel mosquito-derived molecules related to parasite development in Anopheles mosquitoes. We injected in vitro-cultured Plasmodium berghei (ANKA strain) ookinetes into female and male Anopheles stephensi (STE2 strain) mosquitoes and found that the oocyst number was significantly higher in males than in females, suggesting that male mosquitoes better support the development of parasites. Next, RNA-seq analysis was performed on the injected female and male mosquitoes to identify genes exhibiting changes in expression. Five genes with different expression patterns between sexes and greatest expression changes were identified as being potentially associated with Plasmodium infection. Two of the five genes also showed expression changes with infection by blood-feeding, indicating that these genes could affect the development of Plasmodium parasites in mosquitoes.

3.
Int J Parasitol Drugs Drug Resist ; 25: 100539, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38621317

RESUMO

Infection with Plasmodium falciparum is often deadly when it results in cerebral malaria, which is associated with neuropathology described as an overwhelming inflammatory response and mechanical obstruction of cerebral microvascular. PI3Kγ is a critical component of intracellular signal transduction and plays a central role in regulating cell chemotaxis, migration, and activation. The purpose of this study was to examine the relationship between inhibiting the PI3Kγ pathway and the outcome of experimental cerebral malaria (ECM) in C57BL/6J mice infected with the mouse malaria parasite, Plasmodium berghei ANKA. We observed that oral administration of the PI3Kγ inhibitor IPI549 after infection completely protected mice from ECM. IPI549 treatment significantly dampened the magnitude of inflammatory responses, with reduced production of pro-inflammatory factors, decreased T cell activation, and altered differentiation of antigen-presenting cells. IPI549 treatment protected the infected mice from neuropathology, as assessed by an observed reduction of pathogenic T cells in the brain. Treating the infected mice with IPI549 three days after parasite inoculation improved the murine blood brain barrier (BBB) integrity and helped the mice pass the onset of ECM. Together, these data indicate that oral administration of the PI3Kγ inhibitor IPI549 has a suppressive role in host inflammation and alleviates cerebral pathology, which supports IPI549 as a new malaria treatment option with potential therapeutic implications for cerebral malaria.

4.
Bio Protoc ; 14(5): e4952, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38464937

RESUMO

The Plasmodium parasites that cause malaria undergo an obligate, asymptomatic developmental stage in the host liver before initiating the symptomatic blood-stage infection. The parasite liver stage is a key intervention point for antimalarial chemoprophylaxis: successful targeting of liver-stage parasites prevents disease development in individuals and can help to reduce parasite transmission in populations, as the gametocyte forms that transmit infection to mosquitos are exclusively found in the blood stage. Antimalarial drugs that can target multiple parasite stages are thus highly desirable, and one emerging cellular target for such multistage active compounds is the process of protein synthesis or translation. Quantitative study of liver stage translation, and thus mechanistic evaluation of translation inhibitors against liver stage parasites, is not amenable to the methods allowing quantification of asexual blood stage translation, such as radiolabeled amino acid incorporation or lysate-based translation of reporter transcripts. Here, we present a method using o-propargyl puromycin (OPP) labeling of host and parasite nascent proteomes in the P. berghei-HepG2 infection model, followed by automated confocal image acquisition and computational separation of P. berghei vs. H. sapiens nascent proteome signals to allow simultaneous readout of the effects of translation inhibitors on both host and parasite. This protocol details our HepG2 cell culture and infected monolayer handling optimized for microscopy, our OPP labeling workflow, and our approach to automated confocal imaging, image processing, and data analysis. Key features • Uses the o-propargyl puromycin labeling technique developed by Liu et al. to quantitatively analyze protein synthesis in Plasmodium berghei liver-stage parasites in actively translating hepatoma cells. • This quantitative approach should be adaptable for other puromycin-sensitive intracellular pathogens residing in actively translating host cells. • The P. berghei-infected HepG2 recovery and reseeding protocol presented here is of use in applications beyond nascent proteome labeling and quantification.

5.
Parasites Hosts Dis ; 62(1): 42-52, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38443769

RESUMO

Antimalarial drugs are an urgently need and crucial tool in the campaign against malaria, which can threaten public health. In this study, we examined the cytotoxicity of the 9 antimalarial compounds chemically synthesized using SKM13-2HCl. Except for SKM13-2HCl, the 5 newly synthesized compounds had a 50% cytotoxic concentration (CC50) > 100 µM, indicating that they would be less cytotoxic than SKM13-2HCl. Among the 5 compounds, only SAM13-2HCl outperformed SKM13-2HCl for antimalarial activity, showing a 3- and 1.3-fold greater selective index (SI) (CC50/IC50) than SKM13-2HCl in vitro against both chloroquine-sensitive (3D7) and chloroquine -resistant (K1) Plasmodium falciparum strains, respectively. Thus, the presence of morpholine amide may help to effectively suppress human-infectious P. falciparum parasites. However, the antimalarial activity of SAM13-2HCl was inferior to that of the SKM13-2HCl template compound in the P. berghei NK65-infected mouse model, possibly because SAM13-2HCl had a lower polarity and less efficient pharmacokinetics than SKM13-2HCl. SAM13-2HCl was more toxic in the rodent model. Consequently, SAM13-2HCl containing morpholine was selected from screening a combination of pharmacologically significant structures as being the most effective in vitro against human-infectious P. falciparum but was less efficient in vivo in a P. berghei-infected animal model when compared with SKM13-2HCl. Therefore, SAM13-2HCl containing morpholine could be considered a promising compound to treat chloroquine-resistant P. falciparum infections, although further optimization is crucial to maintain antimalarial activity while reducing toxicity in animals.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Camundongos , Animais , Humanos , Antimaláricos/farmacologia , Camundongos Endogâmicos ICR , Plasmodium berghei , Plasmodium falciparum , Cloroquina/farmacologia , Morfolinas , Amidas/farmacologia , Modelos Animais de Doenças
6.
J Ethnopharmacol ; 326: 117936, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38382655

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Phyllanthus muellerianus (Kunze) Exell, a member of the Phyllanthaceae family, is a medicinal plant widely distributed in Africa. Decoctions from the leaves are used in Nigeria to treat fevers, convulsions, some neurological disorders and malaria. AIM OF THE STUDY: This study is to evaluate the anti-malarial properties of methanol extract of Phyllanthus muellerianus (MEPM) leaves and its ethyl acetate fraction using a murine malaria model infected with Plasmodium berghei. Additionally, we seek to investigate the potential modulatory effects of this extract and fraction on CD4+ T-cell populations in the context of malaria infection. MATERIALS AND METHODS: The anti-malarial effects of the leaf methanol extract of Phyllanthus muellerianus (MEPM) were screened using three established in vivo models of anti-plasmodial screening namely the curative, suppressive and prophylactic models. The methanol extract (MEPM) was afterwards fractionated into hexane (HFPM), ethyl acetate (EAFPM), and methanol (MFPM) fractions. In the pilot anti-malarial screening of the fractions, EAFPM exhibited the best antiparasitic activity. Subsequently, EAFPM was screened for anti-malarial activity using the three models above. The effects of the MEPM and EAFPM on haematological indices (Hb and PCV) of the inoculated animals were further screened and the mean survival time (MST) of the animals was monitored. CD4+ T cells of various groups were counted before and after treatment using a flow cytometer. The EAFPM was further subjected to HPLC analysis for identification of its major compounds. RESULTS: The EAFPM (100 and 200 mg/kg) elicited 88% and 93% cure respectively in the curative model, while artesunate (5 mg/kg,- the positive control) gave 87% protection. The MEPM and EAFPM also gave significant suppression of parasitemia in the suppressive model. The treated groups survived beyond 28 days as against 11 days by the control group (infected but not treated). The treated groups also prevented anaemia seen in the negative control. The EAFPM group significantly modulated the CD4+ T cell. Compounds identified were Gallocatechin, Quercetin -3-O-gallate, Ellagic acid, and Methylellagic acid rhamnoside). CONCLUSION: The study established that the leaf of Phyllanthus muellerianus possesses antimalarial activity, thus lending support to its use in the folkloric treatment of malaria.


Assuntos
Acetatos , Antimaláricos , Etanol , Etilenoglicóis , Ácidos Graxos , Malária , Phyllanthus , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Metanol/uso terapêutico , Plasmodium berghei , Linfócitos T , Malária/tratamento farmacológico , Malária/parasitologia , Folhas de Planta , Linfócitos T CD4-Positivos , Nigéria
7.
BMC Complement Med Ther ; 24(1): 79, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326823

RESUMO

BACKGROUND: Chemotherapies target the PfEMP-1 and PfPKG proteins in Plasmodium falciparum, the parasite that causes malaria, in an effort to prevent the disease's high fatality rate. This work identified the phytochemical components of Nauclea latifolia roots and docked the chemical compounds against target proteins, and examined the in vivo antiplasmodial effect of the roots on Plasmodium berghei-infected mice. METHODS: Standard protocols were followed for the collection of the plant's roots, cleaning, and drying of the roots, extraction and fraction preparation, assessment of the in vivo antiplasmodial activity, retrieval of the PfEMP-1 and PfPKG proteins, GCMS, ADME, and docking studies, chromatographic techniques were employed to separate the residual fraction's components, and the Swis-ADME program made it possible to estimate the drug's likeness and pharmacokinetic properties. The Auto Dock Vina 4.2 tool was utilized for molecular docking analysis. RESULTS: The residual fraction showed the best therapeutic response when compared favorably to amodiaquine (80.5%) and artesunate (85.1%). It also considerably reduced the number of parasites, with the % growth inhibition of the parasite at 42.8% (D2) and 83.4% (D5). Following purification, 25 compounds were isolated and characterized with GCMS. Based on their low molecular weights, non-permeation of the blood-brain barrier, non-inhibition of metabolizing enzymes, and non-violation of Lipinski's criteria, betulinic and ursolic acids were superior to chloroquine as the best phytochemicals. Hence, they are lead compounds. CONCLUSION: In addition to identifying the bioactive compounds, ADME, and docking data of the lead compounds as candidates for rational drug design processes as observed against Plasmodium falciparum target proteins (PfEMP-1 and PfPKG), which are implicated in the pathogenesis of malaria, the study has validated that the residual fraction of N. latifolia roots has the best antiplasmodial therapeutic index.


Assuntos
Antimaláricos , Malária , Rubiaceae , Triterpenos , Camundongos , Animais , Antimaláricos/química , 60576 , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Malária/tratamento farmacológico , Malária/parasitologia , Triterpenos/farmacologia , Plasmodium falciparum , Rubiaceae/química
8.
Malar J ; 23(1): 53, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383417

RESUMO

BACKGROUND: The infection of the liver by Plasmodium parasites is an obligatory step leading to malaria disease. Following hepatocyte invasion, parasites differentiate into replicative liver stage schizonts and, in the case of Plasmodium species causing relapsing malaria, into hypnozoites that can lie dormant for extended periods of time before activating. The liver stages of Plasmodium remain elusive because of technical challenges, including low infection rate. This has been hindering experimentations with well-established technologies, such as electron microscopy. A deeper understanding of hypnozoite biology could prove essential in the development of radical cure therapeutics against malaria. RESULTS: The liver stages of the rodent parasite Plasmodium berghei, causing non-relapsing malaria, and the simian parasite Plasmodium cynomolgi, causing relapsing malaria, were characterized in human Huh7 cells or primary non-human primate hepatocytes using Correlative Light-Electron Microscopy (CLEM). Specifically, CLEM approaches that rely on GFP-expressing parasites (GFP-CLEM) or on an immunofluorescence assay (IFA-CLEM) were used for imaging liver stages. The results from P. berghei showed that host and parasite organelles can be identified and imaged at high resolution using both CLEM approaches. While IFA-CLEM was associated with more pronounced extraction of cellular content, samples' features were generally well preserved. Using IFA-CLEM, a collection of micrographs was acquired for P. cynomolgi liver stage schizonts and hypnozoites, demonstrating the potential of this approach for characterizing the liver stages of Plasmodium species causing relapsing malaria. CONCLUSIONS: A CLEM approach that does not rely on parasites expressing genetically encoded tags was developed, therefore suitable for imaging the liver stages of Plasmodium species that lack established protocols to perform genetic engineering. This study also provides a dataset that characterizes the ultrastructural features of liver stage schizonts and hypnozoites from the simian parasite species P. cynomolgi.


Assuntos
Malária , Parasitos , Animais , Humanos , Fígado/parasitologia , Malária/parasitologia , Plasmodium berghei , Microscopia Eletrônica
9.
Mol Microbiol ; 121(4): 767-780, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38238886

RESUMO

Endoplasmic reticulum (ER) plays a pivotal role in the regulation of stress responses in multiple eukaryotic cells. However, little is known about the effector mechanisms that regulate stress responses in ER of the malaria parasite. Herein, we aimed to identify the importance of a transmembrane protein 33 (TMEM33)-domain-containing protein in life cycle of the rodent malaria parasite Plasmodium berghei. TMEM33 is an ER membrane-resident protein that is involved in regulating stress responses in various eukaryotic cells. A C-terminal tagged TMEM33 was localized in the ER throughout the blood and mosquito stages of development. Targeted deletion of TMEM33 confirmed its importance for asexual blood stages and ookinete development, in addition to its essential role for sporozoite infectivity in the mammalian host. Pilot scale analysis shows that the loss of TMEM33 results in the initiation of ER stress response and induction of autophagy. Our findings conclude an important role of TMEM33 in the development of all life cycle stages of the malaria parasite, which indicates its potential as an antimalarial target.


Assuntos
Malária , Parasitos , Animais , Parasitos/metabolismo , Malária/parasitologia , Proteínas de Membrana/metabolismo , Estágios do Ciclo de Vida , Proteínas de Protozoários/metabolismo , Retículo Endoplasmático/metabolismo , Plasmodium berghei/metabolismo , Mamíferos/metabolismo
10.
Elife ; 122024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252559

RESUMO

Gametocytes play key roles in the Plasmodium lifecycle. They are essential for sexual reproduction as precursors of the gametes. They also play an essential role in parasite transmission to mosquitoes. Elucidation of the gene regulation at this stage is essential for understanding these two processes at the molecular level and for developing new strategies to break the parasite lifecycle. We identified a novel Plasmodium transcription factor (TF), designated as a partner of AP2-FG or PFG. In this article, we report that this TF regulates the gene expression in female gametocytes in concert with another female-specific TF AP2-FG. Upon the disruption of PFG, majority of female-specific genes were significantly downregulated, and female gametocyte lost the ability to produce ookinetes. ChIP-seq analysis showed that it was located in the same position as AP2-FG, indicating that these two TFs form a complex. ChIP-seq analysis of PFG in AP2-FG-disrupted parasites and ChIP-seq analysis of AP2-FG in PFG-disrupted parasites demonstrated that PFG mediates the binding of AP2-FG to a ten-base motif and that AP2-FG binds another motif, GCTCA, in the absence of PFG. In promoter assays, this five-base motif was identified as another female-specific cis-acting element. Genes under the control of the two forms of AP2-FG, with or without PFG, partly overlapped; however, each form had target preferences. These results suggested that combinations of these two forms generate various expression patterns among the extensive genes expressed in female gametocytes.


Assuntos
Culicidae , Plasmodium , Animais , Feminino , Fatores de Transcrição/genética , Plasmodium/genética , Fator de Transcrição AP-2 , Bioensaio
11.
Int J Parasitol ; 54(2): 99-107, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37774810

RESUMO

The successful completion of gamete fertilization is essential for malaria parasite transmission, and this process can be targeted by intervention strategies. In this study, we identified a conserved gene (PBANKA_0813300) in the rodent malaria parasite Plasmodium berghei, which encodes a protein of 54 kDa (designated as Pbs54). Localization studies indicated that Pbs54 is associated with the plasma membranes of gametes and ookinetes. Functional studies by gene disruption showed that the Δpbs54 parasites had no defect in asexual proliferation, gametocyte development, or gametogenesis. However, the interactions between male and female gametes were significantly decreased compared with wild-type parasites. The Δpbs54 lines did not show a further reduction in zygote and ookinete numbers during in vitro culture, indicating that the defects were probably restricted to gamete fertilization. Consistent with this finding, mosquitoes fed on Δpbs54-infected mice showed a 30.1% reduction in infection prevalence and a 74.7% reduction in oocyst intensity. Cross-fertilization assay indicated that both male and female gametes were impaired in the Δpbs54 parasites. To evaluate its transmission-blocking potential, we obtained polyclonal antibodies from mice immunized with the recombinant Pbs54 (rPbs54) protein. In vitro assays showed that anti-rPbs54 sera inhibited ookinete formation by 42.7%. Our experiments identified Pbs54 as a fertility factor required for mosquito transmission and a novel candidate for a malaria transmission-blocking vaccine.


Assuntos
Culicidae , Vacinas Antimaláricas , Malária , Animais , Feminino , Masculino , Camundongos , Anticorpos Antiprotozoários , Fertilização , Células Germinativas , Malária/prevenção & controle , Proteínas de Membrana/genética , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes
12.
J Ethnopharmacol ; 321: 117558, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38092319

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The King of Bitters (Andrographis paniculata) is a plant used to cure a wide range of infectious diseases which includes malaria, fever and others. However, there is a paucity of scientific evidence of its effect on male reproductive indices during malaria treatment. AIM OF THE STUDY: The aim of this study is to evaluate the effect of supplemented diet on antiplasmodial, hematological and male reproductive indices in mice infected with Plasmodium berghei. MATERIALS AND METHODS: Aqueous extract of A. paniculata (King of Bitters, KGB) was prepared and the total phenol and flavonoid contents were determined. Forty-two mice, weighing 20-25 g, were distributed into 7 groups consisting of 6 mice each. The mice were innoculated with strain NK65 Plasmodium berghei (Chloroquine, CQ sensitive) and the parasitemia suppression was assessed. The mice were fed with the dietary supplementation of KGB at varying inclusions (2.5%, 5%, 7.5%, and 10%) and administered 10 mg/kg CQ (which served as the positive control) for 5 consecutive days after infection was established. The reactive malondialdeahyde (MDA), antioxidant [superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH)] and the hematological (hemoglobin, packed cell volume and red blood cell) parameters in the infected mice were determined. The reproductive indices (serum testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH), sperm count, sperm motility, and sperm viability) and testis histopathology were also assessed. RESULT: The result revealed that KGB had a total phenol content of 32.55 mgGAE/g and total flavonoid content of 19.71 mgQUE/g. The infected mice treated with the dietary supplementation of KGB showed significantly decreased (p < 0.05) parasitaemia and MDA levels. Furthermore, the 7.5% dietary inclusion showed significant improvement in the antioxidant, hematological and reproductive indices as well as the restoration of testis morphology as seen in the histopathology plate of the infected mice treated with KGB. Hence, this study suggests that the KGB- supplemented diet (7.5%) may be a potential alternative and complementary therapy in the treatment of malaria infection and reproductive disorders.


Assuntos
Antimaláricos , Malária , Masculino , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Plasmodium berghei , Andrographis paniculata , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Motilidade dos Espermatozoides , Sementes , Malária/tratamento farmacológico , Suplementos Nutricionais , Dieta , Flavonoides/farmacologia , Fenóis/farmacologia
13.
Exp Parasitol ; 257: 108686, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158008

RESUMO

BACKGROUND: Based on understanding of placental pathological features and safe medication in pregnancy-associated malaria (PAM), establishment of a stable pregnant mouse infection model with Plasmodium was urgently needed. METHODS: ICR mice with vaginal plugs detected were randomly divided into post-pregnancy infection (Malaria+) and uninfected pregnancy (Malaria-) cohorts. Age-matched mice that had not been mated were infected as pre-pregnancy infection group (Virgin control), which were subsequently mated with ICR males. All mice were inoculated with 1 × 106Plasmodium berghei ANKA-infected RBCs by intraperitoneal injection, and the same amount of saline was given to Malaria- group. We recorded the incidence of adverse pregnancy outcomes and the amounts of offspring in each group. RESULTS: The Virgin group mice were unable to conceive normally, and vaginal bleeding, abortion, or stillbirth appeared in the Malaria+ group. The incidence of adverse pregnancy outcomes was extremely high and statistically significant compared with the control (Malaria-) group (P < 0.05), of which placenta exhibited pathological features associated with human gestational malaria. CONCLUSIONS: The intraperitoneal injection of 1 × 106Plasmodium berghei ANKA-infected RBCs could establish a model of pregnancy-associated malaria in ICR mouse.


Assuntos
Malária , Resultado da Gravidez , Masculino , Gravidez , Feminino , Camundongos , Animais , Humanos , Camundongos Endogâmicos ICR , Placenta/patologia , Malária/tratamento farmacológico , Plasmodium berghei
14.
Trop Life Sci Res ; 34(2): 279-297, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38144385

RESUMO

Malaria still remains a life-threatening parasitic disease with universal targets set for control and elimination. This study aimed to evaluate the in vitro antimalarial susceptibility of Plasmodium falciparum isolates and Plasmodium berghei to selected antimalarial agents and column chromatographic subfractions of Glyphaea brevis leaves extract and FTIR and GCMS of SF8. Trager and Jensen as well as World Health Organisation (WHO) standardised in vitro micro-test system methods were used to determine susceptibility on the patients' blood samples; Column chromatographic procedure was carried out to obtain 11 pooled fractions; FTIR and GCMS were used to determine functional groups and phytochemicals respectively. In vitro anti-plasmodial activity against P. falciparum clinical isolates had IC50 range of 1.03 µg/mL-7.63 µg/mL while their IC50 against P. berghei ranges from 4.32 µg/mL-7.89 µg/mL. Subfraction 8 (SF8) had the least IC50 of 4.32 µg/mL. The FTIR spectrum showed the presence of isoprenoid, alcohol, phenol, alkane, alkenes, ester, carboxylic acids, aromatics and nitro compounds while GCMS identified dodecanoic acid, methyl ester; carotol; hexadecanoic acid, methyl ester; 9-octadecenoic acid (Z)-, methyl ester (oleic acid); methyl stearate; heptadecanoic acid, 16-methyl-, methyl ester; all with their antimalarial reported activities. In conclusion, G. brevis has a great potential for drug development against malaria parasite since it inhibited schizont growth and possesses phytocompounds with antimalarial report.

15.
BMC Complement Med Ther ; 23(1): 402, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946127

RESUMO

Malaria is a global health challenge with endemicity in sub-Saharan Africa, where there are multiple drug-resistant strains and limited access to modern health care facilities, especially in rural areas. Studies indicate that African traditional medicine could make a substantial contribution to the reduction of malaria-related deaths and achievement of universal health coverage (UHC), particularly in these regions. Thus, this study evaluated the curative antimalarial effects of Chromolaena odorata leaf extract using mouse model. Forty-five (45) albino mice weighing between 18 and 22 g were grouped into nine groups of 5 animals each. Animals in groups 2-9 were infected with the chloroquine-resistant strain of Plasmodium berghei, while animals in groups 3-9 were subsequently treated with 10 mg/kg chloroquine, a combination of 1.4 mg/kg artemether and 8.75 mg/kg lumefantrine (Coartem), and varying concentrations of the fraction from the aqueous leaf extract of C. odorata at day 3 post-infection. The findings from this study indicate that treatment with 400 mg/kg of the ethanolic fraction of the crude extract resulted in a significant decrease in parasite load (97.6%), which was comparable to the activities of the conventional drugs chloroquine (98.6%) and Coartem (98.8%). The ethyl acetate and ethanolic fractions at 400 mg/kg also ameliorated the significant alterations in the red blood cells, white blood cells, and platelets of the infected animals. The high antimalarial activity displayed by the ethanolic fraction could be due to the presence of quercetin and kaempferol, as detected by high performance liquid chromatography (HPLC) analysis. The findings suggest that the fractions from C. odorata could serve as an alternative source of malaria therapy, particularly in sub-Saharan Africa.


Assuntos
Antimaláricos , Chromolaena , Malária , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Chromolaena/química , Combinação Arteméter e Lumefantrina , Extratos Vegetais/química , Malária/tratamento farmacológico , Malária/parasitologia , Cloroquina/farmacologia
16.
Acta Parasitol ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37982977

RESUMO

INTRODUCTION: Owing to evolution of parasite strains that are resistant to existing antimalarial drugs, research for novel antimalarial medicines is progressing on numerous fronts. PURPOSE: Herein, we evaluated the in vivo anti-Plasmodium berghei activity of ß-ionone including its ameliorative potential towards P. berghei-associated anaemia and oxidative organ damage. METHODS: Mice were infected with chloroquine-sensitive strain of P. berghei and then treated with ß-ionone at doses of 10 and 20 mg/kg body weight (BW) for seven days. The parasitemia, packed cell volume and redox sensitive biomarkers in the liver, brain and spleen were estimated. RESULTS: Our result showed that ß-ionone, in a dose-dependent fashion, significantly (p < 0.05) repressed the multiplication of P. berghei. More so, the compound, at doses of 10 and 20 mg/kg BW, significantly (p < 0.05) mitigated anaemia and organ damage induced by P. berghei. CONCLUSION: Overall, the findings demonstrated that ß-ionone has antiplasmodial actions and plays a mitigative role against P. berghei-induced anaemia and oxidative organ damage.

17.
Malar J ; 22(1): 335, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936181

RESUMO

BACKGROUND: Acquired functional inhibitory antibodies are one of several humoral immune mechanisms used to neutralize foreign pathogens. In vitro bioassays are useful tools for quantifying antibody-mediated inhibition and evaluating anti-parasite immune antibodies. However, a gap remains in understanding of how antibody-mediated inhibition in vitro translates to inhibition in vivo. In this study, two well-characterized transgenic Plasmodium berghei parasite lines, PbmCh-luc and Pb-PfCSP(r), and murine monoclonal antibodies (mAbs) specific to P. berghei and Plasmodium falciparum circumsporozoite protein (CSP), 3D11 and 2A10, respectively, were used to evaluate antibody-mediated inhibition of parasite development in both in vitro and in vivo functional assays. METHODS: IC50 values of mAbs were determined using an established inhibition of liver-stage development assay (ILSDA). For the in vivo inhibition assay, mice were passively immunized by transfer of the mAbs and subsequently challenged with 5.0 × 103 sporozoites via tail vein injection. The infection burden in both assays was quantified by luminescence and qRT-PCR of P. berghei 18S rRNA normalized to host GAPDH. RESULTS: The IC50 values quantified by relative luminescence of mAbs 3D11 and 2A10 were 0.396 µg/ml and 0.093 µg/ml, respectively, against transgenic lines in vitro. Using the highest (> 90%) inhibitory antibody concentrations in a passive transfer, an IC50 of 233.8 µg/ml and 181.5 µg/ml for mAbs 3D11 and 2A10, respectively, was observed in vivo. At 25 µg (250 µg/ml), the 2A10 antibody significantly inhibited liver burden in mice compared to control. Additionally, qRT-PCR of P. berghei 18S rRNA served as a secondary validation of liver burden quantification. CONCLUSIONS: Results from both experimental models, ILSDA and in vivo challenge, demonstrated that increased concentrations of the homologous anti-CSP repeat mAbs increased parasite inhibition. However, differences in antibody IC50 values between parasite lines did not allow a direct correlation between the inhibition of sporozoite invasion in vitro by ILSDA and the inhibition of mouse liver stage burden. Further studies are needed to establish the conditions for confident predictions for the in vitro ILSDA to be a predictor of in vivo outcomes using this model system.


Assuntos
Anticorpos Monoclonais , Vacinas Antimaláricas , Camundongos , Animais , Plasmodium berghei/genética , Plasmodium falciparum/genética , RNA Ribossômico 18S , Proteínas de Protozoários/genética , Animais Geneticamente Modificados , Anticorpos Antiprotozoários
18.
Parasit Vectors ; 16(1): 401, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925480

RESUMO

BACKGROUND: The extrinsic incubation period (EIP), defined as the time it takes for malaria parasites in a mosquito to become infectious to a vertebrate host, is one of the most influential parameters for malaria transmission but remains poorly understood. The EIP is usually estimated by quantifying salivary gland sporozoites in subsets of mosquitoes, which requires terminal sampling. However, assays that allow repeated sampling of individual mosquitoes over time could provide better resolution of the EIP. METHODS: We tested a non-destructive assay to quantify sporozoites of two rodent malaria species, Plasmodium chabaudi and Plasmodium berghei, expelled throughout 24-h windows, from sugar-soaked feeding substrates using quantitative-PCR. RESULTS: The assay is able to quantify sporozoites from sugar-soaked feeding substrates, but the prevalence of parasite-positive substrates was low. Various methods were attempted to increase the detection of expelled parasites (e.g. running additional technical replicates; using groups rather than individual mosquitoes), but these did not increase the detection rate, suggesting that expulsion of sporozoites is variable and infrequent. CONCLUSIONS: We reveal successful detection of expelled sporozoites from sugar-soaked feeding substrates. However, investigations of the biological causes underlying the low detection rate of sporozoites (e.g. mosquito feeding behaviour, frequency of sporozoite expulsion or sporozoite clumping) are needed to maximise the utility of using non-destructive assays to quantify sporozoite dynamics. Increasing detection rates will facilitate the detailed investigation on infection dynamics within mosquitoes, which is necessary to explain the highly variable EIP of Plasmodium and to improve understanding of malaria transmission dynamics.


Assuntos
Anopheles , Malária , Plasmodium , Animais , Esporozoítos , Anopheles/parasitologia , Plasmodium berghei , Açúcares
19.
Int J Antimicrob Agents ; 62(6): 107012, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865152

RESUMO

BACKGROUND: The clinical use of artemisinin-based combination therapies is threatened by increasing failure rates due to the emergence and spread of multiple drug resistance genes in most human Plasmodium strains. The aim of this study was to generate artemether-resistant (AMR) parasites from Plasmodium berghei ANKA (AMS), and determine their fitness cost. METHODS: Artemether resistance was generated by increasing drug pressure doses gradually for 9 months. Effective doses (ED50 and ED90) were determined using the 4-day suppressive test, and the indices of resistance (I) at 50% and 90% (I50 and I90) were determined using the ratio of either ED50 or ED90 of AMR to AMS, respectively. The stability of the AMR parasites was evaluated by: five drug-free passages (5DFPs), 3 months of cryopreservation (CP), and drug-free serial passages (DFSPs) for 4 months. Analysis of variance was used to compare differences in growth rates between AMR and AMS with 95% confidence intervals. RESULTS: ED50 and ED90 of AMS were 0.61 and 3.43 mg/kg/day respectively. I50 and I90 after 20 cycles of artemether selection pressure were 19.67 and 21.45, respectively; 5DFP values were 39.16 and 15.27, respectively; 3-month CP values were 29.36 and 10.79, respectively; and DFSP values were 31.34 and 12.29, respectively. The mean parasitaemia value of AMR (24.70% ± 3.60) relative to AMS (37.66% ± 3.68) at Day 7 post infection after DFSPs revealed a fitness cost of 34.41%. CONCLUSION: A moderately stable AMRP. berghei line was generated. Known and unknown mutations may be involved in modulating artemether resistance, and therefore molecular investigations are recommended.


Assuntos
Antimaláricos , Malária , Parasitos , Animais , Humanos , Artemeter/farmacologia , Artemeter/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Plasmodium berghei/genética , Plasmodium falciparum , Resistência a Medicamentos
20.
J Neurochem ; 167(3): 441-460, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37814468

RESUMO

Cerebral malaria (CM), a potentially fatal encephalopathy caused primarily by infection with Plasmodium falciparum, results in long-term adverse neuro-psychiatric sequelae. Neural cell injury contributes to the neurological deficits observed in CM. Abnormal regulation of tau, an axonal protein pathologically associated with the formation of neurofibrillary lesions in neurodegenerative diseases, has been linked to inflammation and cerebral microvascular compromise and has been reported in human and experimental CM (ECM). Immunotherapy with a monoclonal antibody to pathological tau (PHF-1 mAB) in experimental models of neurodegenerative diseases has been reported to mitigate cognitive decline. We investigated whether immunotherapy with PHF-1 mAB prevented cerebral endotheliopathy, neural cell injury, and neuroinflammation during ECM. Using C57BL/6 mice infected with either Plasmodium berghei ANKA (PbA), which causes ECM, Plasmodium berghei NK65 (PbN), which causes severe malaria, but not ECM, or uninfected mice (Un), we demonstrated that when compared to PbN infection or uninfected mice, PbA infection resulted in significant memory impairment at 6 days post-infection, in association with abnormal tau phosphorylation at Ser202 /Thr205 (pSer202 /Thr205 ) and Ser396-404 (pSer396-404 ) in mouse brains. ECM also resulted in significantly higher expression of inflammatory markers, in microvascular congestion, and glial cell activation. Treatment with PHF-1 mAB prevented PbA-induced cognitive impairment and was associated with significantly less vascular congestion, neuroinflammation, and neural cell activation in mice with ECM. These findings suggest that abnormal regulation of tau protein contributes to cerebral vasculopathy and is critical in the pathogenesis of neural cell injury during CM. Tau-targeted therapies may ameliorate the neural cell damage and subsequent neurocognitive impairment that occur during disease.


Assuntos
Malária Cerebral , Doenças Neurodegenerativas , Animais , Camundongos , Humanos , Malária Cerebral/terapia , Malária Cerebral/complicações , Proteínas tau , Doenças Neuroinflamatórias , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Cognição , Imunoterapia , Doenças Neurodegenerativas/patologia , Encéfalo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...